Detailed fluctuation theorem for mesoscopic modeling.
نویسنده
چکیده
The detailed fluctuation theorem is derived. The basic assumptions are phase space incompressibility (Liouville's theorem) and time reversibility on the microscopic level. The theorem relates the conditional probability to end up in a mesoscopic state Gamma(B) at time t(B) , starting from Gamma(A) at time t(A) , to the time-reversed process. The ratio of these two probability densities is related to the entropy difference of the two mesoscopic states. The fluctuation theorem remains valid even far from equilibrium as long as the local equilibrium condition is obeyed. It is shown that the theorem imposes constraints on the form mesoscopic equations can take. For stochastic differential equations a generalized kinetic form is derived. The fluctuation theorem can be used to derive thermodynamically consistent simulation techniques. At the end of this paper the relation with the GENERIC formalism is discussed.
منابع مشابه
Quantum fluctuation theorem: Can we go from micro to meso?
Quantum extensions of the Gallavotti-Cohen fluctuation theorem (FT) for the entropy production have been discussed by several authors. There is a practical gap between microscopic forms of FT and mesoscopic (i.e. not purely Hamiltonian) forms for open systems. In a microscopic setup, it is easy to state and to prove FT. In a mesoscopic setup, it is difficult to identify fluctuations of the entr...
متن کاملFluctuations When Driving Between Nonequilibrium Steady States
Maintained by environmental fluxes, biological systems are thermodynamic processes that operate far from equilibrium without detailed-balance dynamics. Yet, they often exhibit well defined nonequilibrium steady states (NESSs). More importantly, critical thermodynamic functionality arises directly from transitions among their NESSs, driven by environmental switching. Here, we identify constraint...
متن کاملViolation of the fluctuation-dissipation theorem in time-dependent mesoscopic heat transport.
We have analyzed the spectral density of fluctuations of the energy flux through a mesoscopic constriction between two equilibrium reservoirs. It is shown that at finite frequencies, the fluctuating energy flux is not related to the thermal conductance of the constriction by the standard fluctuation-dissipation theorem, but contains additional noise. The main physical consequence of this extra ...
متن کاملCanonical structure of dynamical fluctuations in mesoscopic nonequilibrium steady states
We give the explicit structure of the functional governing the dynamical density and current fluctuations for a mesoscopic system in a nonequilibrium steady state. Its canonical form determines a generalised Onsager-Machlup theory. We assume that the system is described as a Markov jump process satisfying a local detailed balance condition such as typical for stochastic lattice gases and for ch...
متن کاملFluctuation theorem and mesoscopic chemical clocks.
The fluctuation theorems for dissipation and the currents are applied to the stochastic version of the reversible Brusselator model of nonequilibrium oscillating reactions. It is verified that the symmetry of these theorems holds far from equilibrium in the regimes of noisy oscillations. Moreover, the fluctuation theorem for the currents is also verified for a truncated Brusselator model.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Physical review. E, Statistical, nonlinear, and soft matter physics
دوره 70 6 Pt 2 شماره
صفحات -
تاریخ انتشار 2004